让线程按顺序执行 8 种方法

一. 前言

本文使用了 7 中方法实现在多线程中让线程按顺序运行的方法,涉及到多线程中许多常用的方法,不止为了知道如何让线程按顺序运行,更是让读者对多线程的使用有更深刻的了解。 使用的方法如下:

[1] 使用线程的 join 方法
[2] 使用主线程的 join 方法
[3] 使用线程的 wait 方法
[4] 使用线程的线程池方法
[5] 使用线程的 Condition(条件变量) 方法
[6] 使用线程的 CountDownLatch(倒计数) 方法
[7] 使用线程的 CyclicBarrier(回环栅栏) 方法
[8] 使用线程的 Semaphore(信号量) 方法

二. 实现

我们下面需要完成这样一个应用场景:

1. 早上;2. 测试人员、产品经理、开发人员陆续的来公司上班;3. 产品经理规划新需求;4. 开发人员开发新需求功能;5. 测试人员测试新功能。

规划需求,开发需求新功能,测试新功能是一个有顺序的,我们把 thread1 看做产品经理,thread2 看做开发人员,thread3 看做测试人员。
1. 使用线程的 join 方法

join(): 是 Theard 的方法,作用是调用线程需等待该 join() 线程执行完成后,才能继续用下运行。

应用场景:当一个线程必须等待另一个线程执行完毕才能执行时可以使用 join 方法。

package com.wwj.javabase.thread.order;

/**
 * @author wwj
 * 通过子程序join使线程按顺序执行
 */
public class ThreadJoinDemo {

    public static void main(String[] args) {
        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("产品经理规划新需求");
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    thread1.join();
                    System.out.println("开发人员开发新需求功能");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    thread2.join();
                    System.out.println("测试人员测试新功能");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        System.out.println("早上:");
        System.out.println("测试人员来上班了...");
        thread3.start();
        System.out.println("产品经理来上班了...");
        thread1.start();
        System.out.println("开发人员来上班了...");
        thread2.start();
    }
}

运行结果

早上:
测试人员来上班了...
产品经理来上班了...
开发人员来上班了...
产品经理规划新需求
开发人员开发新需求功能
测试人员测试新功能

2. 使用主线程的 join 方法

这里是在主线程中使用 join() 来实现对线程的阻塞。

package com.wwj.javabase.thread.order;

/**
 * @author wwj
 * 通过主程序join使线程按顺序执行
 */
public class ThreadMainJoinDemo {

    public static void main(String[] args) throws Exception {

        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("产品经理正在规划新需求...");
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("开发人员开发新需求功能");
            }
        });

        final Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("测试人员测试新功能");
            }
        });

        System.out.println("早上:");
        System.out.println("产品经理来上班了");
        System.out.println("测试人员来上班了");
        System.out.println("开发人员来上班了");
        thread1.start();
        //在父进程调用子进程的join()方法后,父进程需要等待子进程运行完再继续运行。
        System.out.println("开发人员和测试人员休息会...");
        thread1.join();
        System.out.println("产品经理新需求规划完成!");
        thread2.start();
        System.out.println("测试人员休息会...");
        thread2.join();
        thread3.start();
    }
}

运行结果

产品经理来上班了
测试人员来上班了
开发人员来上班了
开发人员和测试人员休息会...
产品经理正在规划新需求...
产品经理新需求规划完成!
测试人员休息会...
开发人员开发新需求功能
测试人员测试新功能

3. 使用线程的 wait 方法

wait(): 是 Object 的方法,作用是让当前线程进入等待状态,同时,wait() 也会让当前线程释放它所持有的锁。“直到其他线程调用此对象的 notify()方法或 notifyAll() 方法”,当前线程被唤醒 (进入“就绪状态”)

notify()和 notifyAll(): 是 Object 的方法,作用则是唤醒当前对象上的等待线程;notify()是唤醒单个线程,而 notifyAll() 是唤醒所有的线程。

wait(long timeout): 让当前线程处于“等待 (阻塞) 状态”,“直到其他线程调用此对象的 notify()方法或 notifyAll() 方法,或者超过指定的时间量”,当前线程被唤醒(进入“就绪状态”)。

应用场景:Java 实现生产者消费者的方式。

package com.wwj.javabase.thread.order;

/**
 * @author wwj
 */
public class ThreadWaitDemo {

    private static Object myLock1 = new Object();
    private static Object myLock2 = new Object();

    /**
     * 为什么要加这两个标识状态?
     * 如果没有状态标识,当t1已经运行完了t2才运行,t2在等待t1唤醒导致t2永远处于等待状态
     */
    private static Boolean t1Run = false;
    private static Boolean t2Run = false;
    public static void main(String[] args) {

        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (myLock1){
                    System.out.println("产品经理规划新需求...");
                    t1Run = true;
                    myLock1.notify();
                }
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (myLock1){
                    try {
                        if(!t1Run){
                            System.out.println("开发人员先休息会...");
                            myLock1.wait();
                        }
                        synchronized (myLock2){
                            System.out.println("开发人员开发新需求功能");
                            myLock2.notify();
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });

        Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (myLock2){
                    try {
                        if(!t2Run){
                            System.out.println("测试人员先休息会...");
                            myLock2.wait();
                        }
                        System.out.println("测试人员测试新功能");
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });

        System.out.println("早上:");
        System.out.println("测试人员来上班了...");
        thread3.start();
        System.out.println("产品经理来上班了...");
        thread1.start();
        System.out.println("开发人员来上班了...");
        thread2.start();
    }
}

运行结果: 这里输出会有很多种顺序,主要是因为线程进入的顺序,造成锁住线程的顺序不一致。

早上:
测试人员来上班了...
产品经理来上班了...
开发人员来上班了...
测试人员先休息会...
产品经理规划新需求...
开发人员开发新需求功能
测试人员测试新功能

4. 使用线程的线程池方法

JAVA 通过 Executors 提供了四种线程池

单线程化线程池(newSingleThreadExecutor);
可控最大并发数线程池(newFixedThreadPool);
可回收缓存线程池(newCachedThreadPool);
支持定时与周期性任务的线程池(newScheduledThreadPool)。

单线程化线程池 (newSingleThreadExecutor): 优点,串行执行所有任务。

submit():提交任务。

shutdown():方法用来关闭线程池,拒绝新任务。

应用场景: 串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

package com.wwj.javabase.thread.order;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @author wwj
 * 通过SingleThreadExecutor让线程按顺序执行
 */
public class ThreadPoolDemo {

    static ExecutorService executorService = Executors.newSingleThreadExecutor();

    public static void main(String[] args) throws Exception {

        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("产品经理规划新需求");
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("开发人员开发新需求功能");
            }
        });

        Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("测试人员测试新功能");
            }
        });

        System.out.println("早上:");
        System.out.println("产品经理来上班了");
        System.out.println("测试人员来上班了");
        System.out.println("开发人员来上班了");
        System.out.println("领导吩咐:");
        System.out.println("首先,产品经理规划新需求...");
        executorService.submit(thread1);
        System.out.println("然后,开发人员开发新需求功能...");
        executorService.submit(thread2);
        System.out.println("最后,测试人员测试新功能...");
        executorService.submit(thread3);
        executorService.shutdown();
    }
}

运行结果

早上:
产品经理来上班了
测试人员来上班了
开发人员来上班了
领导吩咐:
首先,产品经理规划新需求...
然后,开发人员开发新需求功能...
最后,测试人员测试新功能...
产品经理规划新需求
开发人员开发新需求功能
测试人员测试新功能

5. 使用线程的 Condition(条件变量) 方法

Condition(条件变量): 通常与一个锁关联。需要在多个 Contidion 中共享一个锁时,可以传递一个 Lock/RLock 实例给构造方法,否则它将自己生成一个 RLock 实例。

Condition中await()方法类似于Object类中的wait()方法。

Condition中await(long time,TimeUnit unit)方法类似于Object类中的wait(long time)方法。

Condition中signal()方法类似于Object类中的notify()方法。

Condition中signalAll()方法类似于Object类中的notifyAll()方法。

应用场景:Condition 是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition), 只有当该条件具备 (signal 或者 signalAll 方法被带调用) 时 ,这些等待线程才会被唤醒,从而重新争夺锁。

package com.wwj.javabase.thread.order;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/**
 * @author wwj
 * 使用Condition(条件变量)实现线程按顺序运行
 */
public class ThreadConditionDemo {

    private static Lock lock = new ReentrantLock();
    private static Condition condition1 = lock.newCondition();
    private static Condition condition2 = lock.newCondition();

    /**
     * 为什么要加这两个标识状态?
     * 如果没有状态标识,当t1已经运行完了t2才运行,t2在等待t1唤醒导致t2永远处于等待状态
     */
    private static Boolean t1Run = false;
    private static Boolean t2Run = false;

    public static void main(String[] args) {

        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                lock.lock();
                System.out.println("产品经理规划新需求");
                t1Run = true;
                condition1.signal();
                lock.unlock();
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lock.lock();
                try {
                    if(!t1Run){
                        System.out.println("开发人员先休息会...");
                        condition1.await();
                    }
                    System.out.println("开发人员开发新需求功能");
                    t2Run = true;
                    condition2.signal();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                lock.unlock();
            }
        });

        Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                lock.lock();
                try {
                    if(!t2Run){
                        System.out.println("测试人员先休息会...");
                        condition2.await();
                    }
                    System.out.println("测试人员测试新功能");
                    lock.unlock();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        System.out.println("早上:");
        System.out.println("测试人员来上班了...");
        thread3.start();
        System.out.println("产品经理来上班了...");
        thread1.start();
        System.out.println("开发人员来上班了...");
        thread2.start();
    }
}

运行结果: 这里输出会有很多种顺序,主要是因为线程进入的顺序,造成锁住线程的顺序不一致

早上:
测试人员来上班了...
产品经理来上班了...
开发人员来上班了...
测试人员先休息会...
产品经理规划新需求
开发人员开发新需求功能
测试人员测试新功能

6. 使用线程的 CountDownLatch(倒计数)方法

CountDownLatch: 位于 java.util.concurrent 包下,利用它可以实现类似计数器的功能。

应用场景: 比如有一个任务 C,它要等待其他任务 A,B 执行完毕之后才能执行,此时就可以利用 CountDownLatch 来实现这种功能了。

package com.wwj.javabase.thread.order;

import java.util.concurrent.CountDownLatch;

/**
 * @author wwj
 * 通过CountDownLatch(倒计数)使线程按顺序执行
 */
public class ThreadCountDownLatchDemo {

    /**
     * 用于判断线程一是否执行,倒计时设置为1,执行后减1
     */
    private static CountDownLatch c1 = new CountDownLatch(1);

    /**
     * 用于判断线程二是否执行,倒计时设置为1,执行后减1
     */
    private static CountDownLatch c2 = new CountDownLatch(1);

    public static void main(String[] args) {
        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("产品经理规划新需求");
                //对c1倒计时-1
                c1.countDown();
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    //等待c1倒计时,计时为0则往下运行
                    c1.await();
                    System.out.println("开发人员开发新需求功能");
                    //对c2倒计时-1
                    c2.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    //等待c2倒计时,计时为0则往下运行
                    c2.await();
                    System.out.println("测试人员测试新功能");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        System.out.println("早上:");
        System.out.println("测试人员来上班了...");
        thread3.start();
        System.out.println("产品经理来上班了...");
        thread1.start();
        System.out.println("开发人员来上班了...");
        thread2.start();
    }
}

运行结果

早上:
测试人员来上班了...
产品经理来上班了...
开发人员来上班了...
产品经理规划新需求
开发人员开发新需求功能
测试人员测试新功能

7. 使用 CyclicBarrier(回环栅栏) 实现线程按顺序运行

CyclicBarrier(回环栅栏): 通过它可以实现让一组线程等待至某个状态之后再全部同时执行。叫做回环是因为当所有等待线程都被释放以后,CyclicBarrier 可以被重用。我们暂且把这个状态就叫做 barrier,当调用 await() 方法之后,线程就处于 barrier 了。

应用场景: 公司组织春游, 等待所有的员工到达集合地点才能出发,每个人到达后进入 barrier 状态。都到达后,唤起大家一起出发去旅行。

package com.wwj.javabase.thread.order;

import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;

/**
 * @author wwj
 * 使用CyclicBarrier(回环栅栏)实现线程按顺序运行
 */
public class CyclicBarrierDemo {

    static CyclicBarrier barrier1 = new CyclicBarrier(2);
    static CyclicBarrier barrier2 = new CyclicBarrier(2);

    public static void main(String[] args) {

        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println("产品经理规划新需求");
                    //放开栅栏1
                    barrier1.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    //放开栅栏1
                    barrier1.await();
                    System.out.println("开发人员开发新需求功能");
                    //放开栅栏2
                    barrier2.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }
        });

        final Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    //放开栅栏2
                    barrier2.await();
                    System.out.println("测试人员测试新功能");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
            }
        });

        System.out.println("早上:");
        System.out.println("测试人员来上班了...");
        thread3.start();
        System.out.println("产品经理来上班了...");
        thread1.start();
        System.out.println("开发人员来上班了...");
        thread2.start();
    }
}

运行结果

早上:
测试人员来上班了...
产品经理来上班了...
开发人员来上班了...
产品经理规划新需求
开发人员开发新需求功能
测试人员测试新功能

8. 使用 Sephmore(信号量) 实现线程按顺序运行

Sephmore(信号量):Semaphore 是一个计数信号量, 从概念上将,Semaphore 包含一组许可证, 如果有需要的话,每个 acquire()方法都会阻塞,直到获取一个可用的许可证, 每个 release() 方法都会释放持有许可证的线程,并且归还 Semaphore 一个可用的许可证。然而,实际上并没有真实的许可证对象供线程使用,Semaphore 只是对可用的数量进行管理维护。

acquire(): 当前线程尝试去阻塞的获取 1 个许可证, 此过程是阻塞的, 当前线程获取了 1 个可用的许可证,则会停止等待,继续执行。

release(): 当前线程释放 1 个可用的许可证。

应用场景:Semaphore 可以用来做流量分流,特别是对公共资源有限的场景,比如数据库连接。假设有这个的需求,读取几万个文件的数据到数据库中,由于文件读取是 IO 密集型任务,可以启动几十个线程并发读取,但是数据库连接数只有 10 个,这时就必须控制最多只有 10 个线程能够拿到数据库连接进行操作。这个时候,就可以使用 Semaphore 做流量控制。

package com.wwj.javabase.thread.order;

import java.util.concurrent.Semaphore;
/**
 * @author wwj
 * 使用Sephmore(信号量)实现线程按顺序运行
 */
public class SemaphoreDemo {
    private static Semaphore semaphore1 = new Semaphore(1);
    private static Semaphore semaphore2 = new Semaphore(1);
    public static void main(String[] args) {
        final Thread thread1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("产品经理规划新需求");
                semaphore1.release();
            }
        });

        final Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    semaphore1.acquire();
                    System.out.println("开发人员开发新需求功能");
                    semaphore2.release();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        Thread thread3 = new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    semaphore2.acquire();
                    thread2.join();
                    semaphore2.release();
                    System.out.println("测试人员测试新功能");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });

        System.out.println("早上:");
        System.out.println("测试人员来上班了...");
        thread3.start();
        System.out.println("产品经理来上班了...");
        thread1.start();
        System.out.println("开发人员来上班了...");
        thread2.start();
    }
}

运行结果

早上:
测试人员来上班了...
产品经理来上班了...
开发人员来上班了...
产品经理规划新需求
开发人员开发新需求功能
测试人员测试新功能

总结

看完了这么多种方法,是不是对多线程有了更深入的了解呢? 不妨自己试试吧 (代码拷贝均可运行)

使用的场景还有很多,根据开发需求场景,选择合适的方法,达到事半功倍的效果。
留了个坑

看了评论发现,有时候确实没有按顺序运行,这是为什么?

解答:按顺序运行的条件是所有线程都处于运行状态,而这里三个线程并不能保证同时进入了运行状态,我们可以使用 CountDownLatch 让三个线程都进入运行状态后再执行业务代码,这样就不会出现没有按顺序运行的情况了。